EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
SOLUTIONS: Series 7 General Relativity 30 Oct. 2024

7.1 For the following spacetimes, decide if they are globally hyperbolic or not. If they are, find a
Cauchy hypersurface.

(a) The future timecone
L0]={(°....2") : —=(2")*+ (") +-- -+ (2")* <0 and 2° >0}

inside Minkowski spacetime (equipped with the Minkowski metric 7).

(b) The spacetime (R'™3) equipped with a Lorentzian metric g which satisfies, in the Cartesian

coordinates,
1

af T o < —
9o — Nasl 10

(¢) The 1+ 1 dimensional Anti-de Sitter spacetime from Exercise 6.3.

Solution. (a) We will show that (7, [0],7) is globally hyperbolic, and the usual hyperboloidal foliation
provides a time function with level sets which are Cauchy hypersurfaces. To this end, let us define
the function 7 : I, [0] — (0, +00) by

7= (20 =) ()

=1

Note that (1,[0],n) is trivially time oriented; we can choose the time orientation for which 0, is
future directed. Note also that the hypersurfaces {7 = const are spacelike; see the proof of Exercise
2.1.

If v(s) = (2°(s),...,2"(s)) is any future directed causal curve, then 7(y(s)) is strictly increasing
in s, since

%7(7(8)) = 0aT (s - £7(5) = 22°(s)d"(s) — 2Zf(8)fi(8) = 21ap2° (5)2"(s) = 20(7(5),3(5)) <0

the last inequality following from the fact that (s) € I,]0] and v was assumed to be causal and
future directed, so ¥(s) € J.[0]. Therefore, for any 7y € (0,+00), each future directed causal curve
can intersect {7 = 7y} at most once.

It remains to show that, for each 75 € (0, +00), each inextendible causal curve v : (a,b) — I, [0]
(with a,b € (—o0,+00); note that we can alsways reparametrize a curve so as to have a domain
of finite range) intersects the level set {7 = 79}. Without loss of generality (by switching the
parametrization, if necessary) we can assume that ~ is future directed. Let s; € (a,b) and set

1 =T7(7(51))-

Again, without loss of generality, we can assume that 71 < 7y (otherwise, we apply the same arguments
as below, just working towards the past).
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Let us assume, for the sake of contradiction, that v does not intersect {T = 70}; since v(s1) €
{7 < 710}, this means that ~ is contained in the set {T < 79}. Moreover, since v is causal and future
directed, we have that v(s) € J*[y(s1)] for all s > s1. Therefore, 7|, 4) is contained inside the set

K= J"(s)] N {7 < 70}

which is a compact subset of I7]0]. As we will show below, a causal curve that remains in a compact
subset has to be extendible, which is a contradiction.

Proof of extendibility of causal curves staying in a compact set: Let (M™1 g) be a spacetime and
K C M be a compact subset. Let v : (0,1) — M, be a continuous future directed causal curve
that is contained inside IC. We will show that there exists a continuous future directed causal curve
7 :(0,1+ €) = M extending v, i.e. 5(s) = v(s) for all s € (0,1).

Since K is compact, there exists a sequence s, € (0,1), sy Lt 1, and a point ¢ € K, such
that the sequence p, = 7(sx) converges to q. For ¢y > 0 sufficiently small, there exists a small

neighborhood U of ¢ with a local coordinate system (2%, ..., 2") in which the metric g satisfies
|9ap — Tas| < €0 (1)
and ¢ has coordinates (0, ...,0) (normal coordinates around ¢, for instance, have these properties on

a coordinate ball of sufficiently small radius).
In view of (1), the fact that 7 is causal implies that, if v(z),y(w) € U, then their coordinates

satisty A ‘
7' (v(2)) — 2" (y(w))|
|2°(7(2)) — 2°(v(w))]
In particular, this means that the curve v N can be parametrized by the 2° coordinate and, with
that parametrization, the corresponding curve ¢t — ~(t) = (t, (), ... ,x”(t)) is a Lipschitz curve in
R™*! (with respect to the coordinate distance).

If we set t;, = 2°(py) (for k sufficiently large so that pj, is inside ), then our assumption that
pr — q translates to y(t) = (tx, 21 (t), ..., 2"(tx)) — (0,...,0). Since v(t) is Lipschitz, this means
that v(t) — (0, — 0) as t — 0 (i.e. convergence of a sequence implies that the whole curve converges).
Therefore, if o : [0,1) — U is any future directed causal curve with ¢(0) = ¢, then the combined

curve
Y(t), t<0,
o(t), t>0

<140(6) <2 foral i=1,...,n.

is continuous, causal and future directed.

(b) The spacetime (R3*! g) is also globally hyperbolic and the level sets {z° = const} are all
Cauchy hypersurfaces. In order to see this, note that the condition |g.s — 7as| < 1—10 implies that, if
v is a causal curve, then

0 200574 = Nag ™37 + (Gas = Mag) 73" = =32 + D_ (52 + (G — Ma) 73

Page 2



EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
SOLUTIONS: Series 7 General Relativity 30 Oct. 2024

1.e.

In particular, the 2° coordinate is strictly monotonic along « and, hence, 2° can be used to parametrize
the curve and, moreover, ~ intersects {2° = const} at most once.

We will now show that an inextendible causal curve vy : (a,b) — R3™! intersects every {z° = const}
hypersurface at least once; without loss of generality, we will consider the case of {z° = 0} and, as
in part (a), we will assume that v is future directed and that v(s;) € {2° < 0} for some s; € (a,b).
If we assume for the sake of contradiction that v N {z° = 0} = (), then

Yisipy € S v(s1)] N {a® < 0}

However, in view of the fact that any causal curve emanating from 7(s;) satisfies (2), it follows that

N | —

T 207 € {0t 0 a) =0 >

ie. JT[(p° p',p? p?®)] is contained in the future of cone of “twice” the width of that associated to .
Thus, J[y(s1)] N {z° < 0} is contained in a compact set. Using the lemma proved at the end of
part (a), this implies that v cannot be inextendible, which is a contradiction.

(c) The AdS spacetime is not globally hyperbolic. As we proved in Exercise 6.b, there exist points
p,q in that spacetime with ¢ € I't[p] such that no timelike geodesic exists connecting p, ¢; recall that,
on a globally hyperbolic spacetime, such a timelike geodesic always exist. You can also check that,
with the notations of Exercise 6,b, the causal diamond J*[(0,0)]NJ~[(,0)] is not compact (extends
all the way to “infinity” in the x direction).

7.2 Let (M, g) be a spacetime and let p € M.

(a) Show that if ¢ € J*(p), then there exists a sequence of points ¢, € I (p) with ¢, — g,
ie.
J*(p) C clos(I*(p)).
Hint: Starting from a causal curve y connecting p to q, you need to find a sequence of
timelike curves v, emanating from p converging to . To this end, if T' is a globally timelike
vector field on M, consider variations vs(t) of v(t) = vo(t) such that the variation vector
field %(”ys(t))\szo is of the form f(t)T'|y) for an appropriately chosen function f.

(b) Assume, moreover, that (M, g) is globally hyperbolic. Prove that, in this case

J*(p) = clos(I*(p)).
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(c¢) Can you find an example of a (necessarily not globally hyperbolic) spacetime (M, g) with
a point p € M such that J*(p) is not closed?

Solution. (a) Let «y : [0,1] — M be a future directed causal curve such that «(0) = p and (1) = g.
Let N be a a future directed timelike vector field on M and f : [0, 1] — [0, 4+00) a function that we
will determine shortly, satisfying the condition

£(0) = 0.

Let also v, : [0,1], s € [0,1) be a family of curves which is a variation of y (i.e. satisfy 79 = ) with

and with variation vector field X which satisfies
X |’y = f N

(since f(0) = 0, the above two requirements are consistent). We will show that, for s > 0 small
enough, the tangent 5, is future directed timelike; this will imply that the points v4(1) belong to
I*[p); in view of the fact that v,(1) =% ~o(1) = ¢, this will imply that ¢ € clos(I*[p]), as required.

For any to € [0,1], let (z°,...,2") be a local coordinate chart around ~y(to) such that dy is future

directed and timelike; then
No|v(t) > 0.

With respect to those coordinates, we can calculate for any ¢ € [0, 1] such that ~(¢) lies inside this
coordinate chart: 5

%’Yf(t)}szo = Xi|v(t) = f(t)Ni|v(t)

and, therefore, by differentiating in ¢:

a e _p! 7 le”Y(t)
Therefore, integrating in s, we have for s small enough:
- o i dN'|
B2 = 30 + s (F (ON 0 + F()—212) +O().

Since 7 is future directed and causal, the above vector will be future directed and timelike as long

as f'(t)N'|y + f(t)% is future directed and timelike and s is small enough. For this, it suffices
to fix f to satisfy
F1(t) = Cf(t) forallte0,1]

AN*L (1)

for a constant C' which is large enough in terms of the ratios . In each coordinate

P )Ni\w(t>
NOL 1) N )

chart as above, the fact that such a constant exists follows by the fact that N is continuously
differentiable along ~; since ([0, 1]) is a compact set in M, it can be covered by a finite number
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of coordinate charts as above, so this constant C' can be chosen to be the same for each of these
coordinate charts.

(b) Let ¢ € clos(I*[p]); by the construction of part (a), there exist a sequence g, € IT[p|
such that ¢, — ¢ and which, moreover, satisfies the property that ¢,.1 € I~ [q,]; this is because
the curve s — ((s) = vs(1) constructed in part (a) is timelike future directed for small s, since
0s7s(1)|s=0 = f(1)N|y1). In particular, if o is any future directed causal curve connecting p to gy, I
can extend it to a future directed causal curve & connecting p to g by following the curve ((s) from
Gn t0 qo. In particular, denoting with C,, the space of curves

C, = {cr :10,1] = M, 0(0) = p, o(1) = gy, 7y is continuous, causal and future directed},

by extending each curve o in C), connecting p to g, to a curve ¢ as described above connecting p to
qo, we can homeomorphically identify C,, with the subset C,, of Cy of future directed causal curves
going from p to g, and from there to ¢ by following the curve (. In particular,

C~(n—i—l g én

In particular, each curve in C, is a future directed causal curve connecting p to gy passing through
the points ¢1,...,q,

Since (M, g) is globally hyperbolic, the space of curves C,, is compact with the C° topology. In
particular, C,, is a compact subset of Cy. Therefore, the monotonicity property above implies that

c=Ne
n=0

is non-empty and compact. But each curve o in C' is a future directed causal curve connecting p to
qo such that o passes through all the points ¢,, n € N. By continuity, this means that ¢ also passes
through ¢ = lim,, ¢,,. Hence, ¢ is connected to p through a future directed causal curve and, thus,
q € Jt[p]. Thus,

clos(I*[p]) C J*[p].

Combined with part (a), we obtain the equality of the two sets.

(c) Consider (R'*! n) with the point (1,1) removed. Then J*[(0,0)] consists of the cone {(¢,z) :
t > |x|} with the ray {(¢,¢) : t > 1} removed.

7.3 In this exercise, we will explore some of the geometric properties of the Riemann curvature
tensor. To this end, let us fix a smooth Lorentzian manifold (M, g). Recall that

R(X,Y)Z = VxVyZ - VyVxZ - VixyZ.

(A) Let ¢: (—e€,€) x [0,1] — M be a smooth map such that, for each s € (—¢,¢€), 75 = ¢(s,-)
is a geodesic. Define the vector fields T = d¢(%) and X = dgb(%).

(a) Prove that [T, X]| =0. (Hint: Compare VxT and V1X.)
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(b) Let us define the acceleration vector field
a = VTVTX.
Prove that
a=—R(X,T)T.

Intuitively, X measures the infinitesimal separation between nearby geodesics; thus,
when the right hand side above is non-zero, nearby geodesics tend to accelerate to-
wards or away from each other.

(B) Let v : [0,1] — M be a smooth curve. For any t1,t, € [0,1], we will denote with
Prt1)—svta) © Ty M — Tyt,)M the parallel transport along v from ~(¢1) to y(t2).
(a) Prove that, for any vector field Z along v, as 7 — 0:

Zli=0 — Py(r Zl=r
lim =0 waetUIAL — V.0 Z.

T—0 T

Hint: Contruct a frame {e;}_, of vector fields along v which are parallel translated,
and express Z in components with respect to e;.

*(b) Let ¢ : [—1 ] [~1,1] — M be a smooth map with p = $(0,0) and let X = ¢*(52)
and Y = ¢* ( 7). For any sq,s, € (0,1), we will consider the rectangular loop (s, s,)
starting and endmg at p which is of the form 7, s,) = 71 U2 U3 U7y, where

() = ¢(t,0), te]0,s1],

'72(5) = ¢(Sl> )7 s € [07 82]7
V3(t) = @(s1 — t,52), t€0,51],
”}/3(8) = ¢(O S9 — ), S € [0, 82].

For any Z € T,M, let Z, s,y € T, M be the tangent vector obtained after parallel
transporting Z, around 7, i.e. following the successive mappings

7 =7 = Py ) =mn(s)Z — Z" = [P’Y2(0)H'Y2(32)Z/
— 7" = [P'y3(0)—>73(81)Z” = Lsr,52) = [P’Y4(0)_”‘/4(52)Zm'

Show that
. . Z(81 82) - Z
lim lim ———— = —-R(X,Y)Z.
s9—051—=0 S1S2
Solution. (A) (a) In any local coordinate system (2°,...,2") on M, we have

o_ 09" o_ 09"
T_ﬁ and X—E

Note that, for any s € (—¢,€), we can view X as a vector field along the curve v, : [0,1] — M,
vs(t) = ¢(s,t), whose tangent vector is T'; thus, we can compute

d o L) 0600
dt otds | B1ED g "o

(VrX)* = — (X,

() T T8 heT’ X7 =
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Similarly, for any ¢ € [0, 1], we can think of T" as a vector field along the curve ¢, : (—€,e) — M,
o1(s) = ¢(s,t), whose tangent vector is X; we therefore have:

o e a PO | e 00700
(VD) = = (T%ou9) + Ty lon XPT7 = 5= + T ot~ 5
Using the fact that the Levi-Civita connection is torsion-free and I'g is symmetric in 3,7, we can
readily compute

T, X]* = (V2X)* — (VxT)® = 0.

(b) Using the fact that [X,T] = VxT — VX = 0 (from part (a)) and the fact that R(U, V)W =
VuVyW = VyVyW — VW, we can readily calculate:

a=VrVrX = VyVxT = —R(T, X)T + VxV:T — Vi xT = —R(T, X)T,

where, in passing to the last equality above, we made use of the fact that ~, is a geodesic and T = 7,
so that V7T = 0.

(B) (a) Let {&,}7_ be a basis of orthonormal tangent vectors in 7%g) M with respect to gl and
let {e,}7_, be a set of vector fields along «y such that e, is the parallel translate of &, (i.e. €,|i=0 = €a
and Ve, = 0. Since

d
Eg(ea, es)ly) = 9(Viea, ep) + glea, Vieg) =0,

we infer that, for any ¢ € [0, 1], {ea|y@) }a—o is an orthonormal base for T’ ;) M.

Any vector field Z along « can be expressed, with respect to the basis {e,}!'_, as Z = Z%,
for some (unique) component functions Z, : [0,1] — R, @ = 0,...,n. In this basis, the covariant
derivative and the parallel translation of a vector field become a standard derivative and translation,
respectively, of the component functions; in particular, we can readily compute:

dz dz

V;YZ = v,y(ZQGQ) = Wea + ZQV;YG(X = W

Ca-

Moreover, since, for any t1,ts € [0, 1], we have Po ;) (t2)€aly(t) = €aly(ta), the linearity of the parallel
transport operator implies that if v = v%eq| ;) is an element of T’ )M, then

Poyt1)=r(t2)V = V" €aly(ta)-

We can thus calculate:

lim Z’t:O - [P'y(r)—>'y(0)Z|t:T — lim Za(o)ea‘t:() - [PV(T)—W(O)(ZQ(T)ea‘t:T)
T—0 T T7—0 T

Z*(0)eqli=0 — Z°(1)eali=o
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Moreover, using Taylor’s theorem to express for any ¢ € [0, 1]:

200 = 7°0) + S O) + 5 S o)

for some £(t) € [0,¢] depending smoothly on ¢, we also have the following useful expression for the
parallel transport operator:

Pryiyov0 2 = Zlho) + Va2 -t + V[t -1 (3)

for some smooth function V' : t — V[t] € T} )M with V[t] = %dztzf (£(t)); note that

t—0

V[t] — EVyV:yZh:O.

(b) For ¢ : [-1,1] x [=1,1] — M as in the statement of the exercise, we will denote by ~,(-)
the family of curves ¢t — gb(s,t) and by ~;(-) the family of curves s — ¢(s,t) in M. Note that
Xty = Js(t) and Yy = 9;(s). For any vector field W defined along the image of the map ¢ and

any h € (—1,1), we will deﬁne the vector fields PWW on ¢([—1,1] x [-1 + |h|,1 — |h]]) and PPW
on ¢([—14|h|,1—|h|] x [=1,1]) to be the parallel translates of W along s and ~;, respectively, with
step h, i.e.

(PYW) o) = Prate=nysmuoW  and (POW) |5 = Pogiamnyyin V-
Note that, applying (3) for v, and ,, we obtain

(POW) |osy = Wlsisn) — (VW) g + VA[W; 1] (s 2
([P’(h)W) lots.t) = Wlas) = (VyW)lgnh + Va[W5 Al nh
for some smooth vector fields V;[W; b, Vo[W; h] depending smoothly on h and W and satisfying

1 1

VAW, h] =5 SV VW, VoW, h] 25 S0y Vy I

Using the above formulas, we can compute for any s, s9 > 0
PPtz = P2 (7 — (Vi Z)s1 + Vi[Z; s1]s7)
= (Z —(VxZ)s1 + Vi[Z; sl]sf) — <Vy(Z —(Vx2)s1 + W[ Z; 31]5%)>32

+Va[(Z = (VxZ)s1 + VilZ; s1]s1); 2] 55
=7 — (VXZ)Sl — (VYZ)SQ + (VYVXZ)Slsg
+VilZ; s1)st + Vo[ (Z — (VxZ)s1 + VA[Z; 51]s7); s2) 55 — (VyVA[Z; 1)) s1s0

and, similarly,

[P(Sl)[P/(SZ)Z =7 — (VXZ)Sl - (VYZ)SQ + (VXVyZ)Slsg
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+ ValZ; s0)s5 + Vi[(Z — (Vy Z)ss + Va|Z; 85]s3); 82] 51 — (Vx Va[Z; 53] 5351
Therefore, we compute
p/(s2)p(s1) 7 _ plsi)p/(s2) 7
= (VyVXZ - VXVYZ)3152
+ (VilZs 1) = Vi[(Z = (Vv Z)ss + VlZ; )83 2] ) o
+ (1[(Z = (Vx2)s1 + Wl Z:51]83): 0] = Vol Z; 2] ) 3

- ((VY‘/l[Z; s1]) = (VxVa[Z; 32])) 5351
In particular, using (4) for the second and third lines in the right hand side, we have:

P/(s2)p(s1) 7 _ plsi)pr(s2) 7
lim = Vyvxz - VvaZ = R(Y, X)Z

(s1,82)—(0,0) 51892

Using the fact that PC"P®) = Id (and similarly for P'), we have

Zsrsa)lp = Zlp = (P PEIPEIPEVZ) | 40.0) = Zlg00)

_ <[P/(—52)[P(—81) [p(sz)u:(sn 7 _ pls)pUs2) Z])‘
#(0,0)

Therefore, since limy,_o P = Id (and similarly for P’), we obtain the required formula:

lim Z(81782)|P -7

(31782)*%070) 5152

L _ Ry, x)2),

7.4 Let (M, g) be a smooth Lorentzian manifold of dimension n + 1 and let R be its Riemann
curvature tensor.

(a) Show that, in any local coordinate chart (z°,...,2") on M, the components of R satisfy
the following identities:

1. Ragrs = —Ragsy.

2. Ragys = Rosas.

3. Rapys + Rospy + Roryep = 0 (Flirst Bianchi identity).

4. VoRgyse + VyRapse + VaRyase = 0 (Second Bianchi identity).

Prove that the Ricci tensor satisfies:
feY - 1
9*° Vo (Ricg, — éRgm) = 0.

That is to say, the Einstein tensor of every Lorentzian manifold is divergence free.
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(b) Prove that, when n+1 = 3, R,s,s has exactly 6 independent components. Noting that this
is the same number of independent components as for the Ricci tensor Ricj = g Riaj,
can you prove that, when n +1 = 3, Ric;; = 0 implies that R;j;; = 07 How many
independent components do these tensors have in dimension n + 1 = 27

(¢) When n + 1 > 3, define the Weyl tensor by the relation

1 . . . .
Wapys = Rapys + ] (cha(ggﬁv — Ricaygps + Ricgygas — chﬁ(;gmy)

1

+ mR(Qawgﬂa — Gas9py)

where R = ¢“ Ric;; is the Ricci scalar. Prove that the Weyl tensor satisfies the same
symmetries as the Riemann tensor, and moreover

gaﬂ/Waﬁfﬁ =0.

Deduce that W,g, = 0 when n+ 1 = 3.

*(d) Let ¢ : M — Ry be a C™ function and consider the conformal metric
g=dg.
Show that the Weyl tensors of g and g satisty
W5 = W6,

i.e. W is a conformal invariant of g. Deduce that a necessary condition for a metric g to
be conformally flat, i.e. of the form ¢?n, is that W = 0 (it can be shown that it is also a
sufficient condition when dimM > 3).

Solution. (a) All of the above identities are tensorial in nature, i.e. can be reexpressed in a coordinate
independent way as follows: For any vector fields X, Y, Z, W on M,

R(X,Y)Z = —R(Y,X)Z,

g(R(X,Y)Z,W) = —g(R(Z,W)X,Y),

R(X,Y)Z+ R(Z,X)Y + R(Y, Z)X =0,

(VZR)(X, Y)W + (VyR)(Z, X)W + (VxR)(Y, Z)W = 0.

Thus, in order to prove these identities, it suffices to show that they are true in one coordinate

system.
The most convenient coordinates to establish pointwise identities are the normal ones: Recall
that, for any p € M, if (2°,...,2") are normal coordinates around p, then

gocﬁlp = Nap and 8a9/87|p =0= Fgﬁ|p- (5)
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Moreover, as a consequence of the lemma of Gauss:

aCQYBg’Y5|p + a?/agﬂélp + 8?;79a6|p =0. (6)
Therefore, for any tensor field 7" around p:

(vaT>lek |p — aaTlllk |p'

Ji---Ji J1---J1
Moreover, recall that, in any coordinate system, the Riemann curvature tensor takes the form
Ragys = o (0,155 — 15 + T2 5, — T3, ),
where
I, = %QM (090 + Ov G — OuGu)-
Thus,
Rogys = %(%gaa — 03590 + 0595y — Onygps) +9 - g - Dg.

Using the property (5) of the normal coordinate system, we can readily verify that

(8/%79045 - agégow + 8269/37 - 62«/965) |p

DN | —

Ropyslp =

and ]
(VaR)apyslp = 5 (035,908 = Rgsor + Oxgy = Orars) Iy
The identities 1-2 follow directly from the above expression, while the Bianchi identities (i.e. identities
3—4) follow using (6).
Taking two contractions of the 2"¢ Bianchi identity, and using the symmetries of R (and the fact
that Vg = 0, Ric,, = g"“)‘RW,,,\ = —g”’\RMA,, and R = gaBRicag), we can also calculate:

0= 990" VaRgyse + 9°9"°Vy Ragse + §*°9"° Vs Ryase
= —g‘“VO{RicﬁE — g’yavaRiC&; —+ V5R
= —2¢""V Ric,g + VR,

which is exactly the identity that we wanted to prove.
(b) When dimM = 3, it is easy to check using the symmetries of the Riemann curvature tensor
R that all components R,g,s can be obtained from the following ones:

R12127 R13137 R12137 R12327 R13237 R2323

(one way to select six such components is to note that the symmetries of R imply that any component
with three repeated indices vanishes; then, we can first compute all components where the index 1
appears twice, then once and finally a component where 1 doesn’t appear as an index). Moreover,
it is also easy to check that noone of the above components can be obtained from any of the other
five via permutations of the indices (and, hence, from the symmetries of R,g,5). This is the same
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number of independent components as for the Ricci tensor Ric,pg = gV‘SRM@(g in this dimension (since
Ric,p is essentially a symmetric 3 x 3 matrix, it has at most 6 independent components; it can be
also checked that each of {Ricyy, Ricia, Ricy3, Ricos, Ricas, Ricss} cannot be obtained from the other
five using the symmetries of R). In fact, it is easy to check that we have the following 6 x 6 linear
system of relations between the components of Ric and R (using, again, the symmetries of R to carry
out the appropriate permutations of the indices):

Ricyy = g Ria1z + 2% Rizis + 9% Rusus,
Riciy = —g"* Ri212 — 9" Ris13 — ¢°° Riz2so + 9% Rusas,
Ricis = —g" Risis + 9" Riz13 — ¢°° Risos + 97 Rioso
Ricyy = g Ria1z + 29" Rizso + 9% Ragas
Ricys = —g”° Rosos + 97 Rizs2 + " Risos + 9" Ruaus
Ricss = g™ Rigiz + 29" Rizas + 97 Ragas.

It can be readily checked that, provided [g;;] is non-degenerate, the above system is also non-
degenerate, namely it can be solved to express {Riai2, Ri313, R1213, R1232, Ri323, Rog2s} linearly in
terms of { Ricy1, Ricis, Ricis, Rices, Ricos, Ricss}. In particular, if Ric = 0, then R = 0 as well.

In the case when dimM = 2, it can be readily verified that R and Ric have each only one
independent component (namely Ris12 and Rjp, since any component of R with three repeated
indices has to vanish).

c¢) Using the fact that Ric,s = Ricg, and
B B

Raﬁ’yé - _Raﬂcha
Raﬁ'yé = R’y(saﬂ?
Raﬁ'yé + Roa(S,BW + Rawéﬁ = 07

we can readily check that the Weyl tensor W also satisfies

Waﬁw& = _Waﬁé'\{a
Waﬁfycg = Wwﬁaﬁa

Wapys + Wasgy + Waysg = 0.

Moreover,

1 . . . .
gvéwcwﬁé - g’yaRcw,BE + 2976 (Rlcac?gﬁv - Rlcaﬂgvls + Rlcﬂ'ygaé - RZC’Y(SQO{,B)

n —
1
R i o Yo
= Ricag + m (Rz’ca55g — nRiCag + RZ'CB,Y(S; — Rgaﬁ»)
1
R(ngas — 0]
+ (n o 1)(n _ 2) (ng B agﬁ’Y)
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1
= Ricag + —2 (Ricag — nRiCag + Ricaﬁ — Rga5>
n —

1

o Dm =g Dges)

=0.

In the case when dimM = 3, the fact that W,z,s satisfies the same symmetries as R,g,5 implies
that, exactly as in the case of part (a) of this exercise, all independent components of W,g,s5 can
be expressed linearly in terms of the independent components of g“/(SWMg(;; since the latter tensor
vanishes identically in any dimension, we infer that W = 0 when n = 3.

(d) In any local coordinate chart on M, we have

Jop = *gap and  §*¥ = ¢ 2g*".

We can, therefore, readily compute that the Christoffel symbols flﬁ = %f]”"; (aagw + 08950 — 85§a5)
and FZYB of g and g, respectively, are related by:

1
¢

1
¢

1

7, =T0,+
B B &

08} + ~ 0] — <0509 Gas-

Using the formula
R%05 = 0,155 — 05155 + T35 — TR,

for the components of the Riemann curvature tensor, we can similarly compute that

Rogrs = 0" Ragys — 0 (9o Tos — 9oy Tas + 955 Tor — GasTs ) (7)

where the tensor T is defined in terms of the conformal factor ¢ by

1
Tas = 6710050 — & 'T0g0r0 — 207" 0ud030 + 5670,00509"" Gus-

We can therefore readily check that the term Taﬁ,yg = GarTss — 98yTos + 9ssTory — Gaslsy in the
right hand side of (7) is traceless with respect to any pair of indices (namely any contraction of the
form g7, 5,5 vanishes). Therefore, using the formula defining W55 in terms of R,p,s that, when
considering the difference between VNVQBW; and ¢*W,s,s all the terms involving the tensor 7" from (7)
cancel out, i.e.

Wa,@'yé - ¢2Wa676 = 0.

In particular, since R = 0 (and, thus, W = 0) for the flat metric n, we infer that a metric g which
is of the form ¢? - 1 has vanishing Weyl tensor.
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