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7.1 For the following spacetimes, decide if they are globally hyperbolic or not. If they are, �nd a
Cauchy hypersurface.

(a) The future timecone

I+[0] =
{
(x0, . . . , xn) : −(x0)2 + (x1)2 + · · ·+ (xn)2 < 0 and x0 > 0

}
inside Minkowski spacetime (equipped with the Minkowski metric η).

(b) The spacetime (R1+3) equipped with a Lorentzian metric g which satis�es, in the Cartesian
coordinates,

|gαβ − ηαβ| <
1

10

(c) The 1 + 1 dimensional Anti-de Sitter spacetime from Exercise 6.3.

Solution. (a) We will show that (I+[0], η) is globally hyperbolic, and the usual hyperboloidal foliation
provides a time function with level sets which are Cauchy hypersurfaces. To this end, let us de�ne
the function τ : I+[0] → (0,+∞) by

τ
.
= (x0)2 −

n∑
i=1

(xi)2.

Note that (I+[0], η) is trivially time oriented; we can choose the time orientation for which ∂0 is
future directed. Note also that the hypersurfaces {τ = const are spacelike; see the proof of Exercise
2.1.

If γ(s) = (x0(s), . . . , xn(s)) is any future directed causal curve, then τ(γ(s)) is strictly increasing
in s, since

d

ds
τ(γ(s)) = ∂ατ |γ(s) · ẋα(s) = 2x0(s)ẋ0(s)− 2

n∑
i=1

xi(s)ẋi(s) = 2ηαβx
α(s)ẋβ(s) = 2η

(
γ(s), γ̇(s)

)
< 0

the last inequality following from the fact that γ(s) ∈ I+[0] and γ was assumed to be causal and
future directed, so γ̇(s) ∈ J+[0]. Therefore, for any τ0 ∈ (0,+∞), each future directed causal curve
can intersect {τ = τ0} at most once.

It remains to show that, for each τ0 ∈ (0,+∞), each inextendible causal curve γ : (a, b) → I+[0]
(with a, b ∈ (−∞,+∞); note that we can alsways reparametrize a curve so as to have a domain
of �nite range) intersects the level set {τ = τ0}. Without loss of generality (by switching the
parametrization, if necessary) we can assume that γ is future directed. Let s1 ∈ (a, b) and set

τ1 = τ(γ(s1)).

Again, without loss of generality, we can assume that τ1 < τ0 (otherwise, we apply the same arguments
as below, just working towards the past).
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Let us assume, for the sake of contradiction, that γ does not intersect {τ = τ0}; since γ(s1) ∈
{τ < τ0}, this means that γ is contained in the set {τ < τ0}. Moreover, since γ is causal and future
directed, we have that γ(s) ∈ J+[γ(s1)] for all s ⩾ s1. Therefore, γ|[s1,b) is contained inside the set

K = J+[γ(s1)] ∩ {τ ⩽ τ0}

which is a compact subset of I+[0]. As we will show below, a causal curve that remains in a compact
subset has to be extendible, which is a contradiction.

Proof of extendibility of causal curves staying in a compact set: Let (Mn+1, g) be a spacetime and
K ⊂ M be a compact subset. Let γ : (0, 1) → M, be a continuous future directed causal curve
that is contained inside K. We will show that there exists a continuous future directed causal curve
γ̃ : (0, 1 + ϵ) → M extending γ, i.e. γ̃(s) = γ(s) for all s ∈ (0, 1).

Since K is compact, there exists a sequence sk ∈ (0, 1), sk
k→∞−−−→ 1, and a point q ∈ K, such

that the sequence pk = γ(sk) converges to q. For ϵ0 > 0 su�ciently small, there exists a small
neighborhood U of q with a local coordinate system (x0, . . . , xn) in which the metric g satis�es

|gαβ − ηαβ| < ϵ0 (1)

and q has coordinates (0, . . . , 0) (normal coordinates around q, for instance, have these properties on
a coordinate ball of su�ciently small radius).

In view of (1), the fact that γ is causal implies that, if γ(z), γ(w) ∈ U , then their coordinates
satisfy

|xi(γ(z))− xi(γ(w))|
|x0(γ(z))− x0(γ(w))|

⩽ 1 +O(ϵ0) ⩽ 2 for all i = 1, . . . , n.

In particular, this means that the curve γ ∩ U can be parametrized by the x0 coordinate and, with
that parametrization, the corresponding curve t → γ(t) =

(
t, x1(t), . . . , xn(t)

)
is a Lipschitz curve in

R
n+1 (with respect to the coordinate distance).
If we set tk = x0(pk) (for k su�ciently large so that pk is inside U), then our assumption that

pk → q translates to γ(tk) = (tk, x
1(tk), . . . , x

n(tk)) → (0, . . . , 0). Since γ(t) is Lipschitz, this means
that γ(t) → (0,→ 0) as t → 0 (i.e. convergence of a sequence implies that the whole curve converges).
Therefore, if σ : [0, 1) → U is any future directed causal curve with σ(0) = q, then the combined
curve

g̃(t) =

{
γ(t), t < 0,

σ(t), t ⩾ 0

is continuous, causal and future directed.

(b) The spacetime (R3+1, g) is also globally hyperbolic and the level sets {x0 = const} are all
Cauchy hypersurfaces. In order to see this, note that the condition |gαβ − ηαβ| ⩽ 1

10
implies that, if

γ is a causal curve, then

0 ⩾gαβγ̇
αγ̇β = ηαβγ̇

αγ̇β + (gαβ − ηαβ)γ̇
αγ̇β = −(γ̇0)2 +

3∑
i=1

(γ̇i)2 + (gαβ − ηαβ)γ̇
αγ̇β
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⩾− 2(γ̇0)2 +
1

2

3∑
i=1

(γ̇i)2,

i.e.

|γ̇0| ⩾ 1

2

√√√√ 3∑
i=1

(γ̇i)2. (2)

In particular, the x0 coordinate is strictly monotonic along γ and, hence, x0 can be used to parametrize
the curve and, moreover, γ intersects {x0 = const} at most once.

We will now show that an inextendible causal curve γ : (a, b) → R
3+1 intersects every {x0 = const}

hypersurface at least once; without loss of generality, we will consider the case of {x0 = 0} and, as
in part (a), we will assume that γ is future directed and that γ(s1) ∈ {x0 < 0} for some s1 ∈ (a, b).
If we assume for the sake of contradiction that γ ∩ {x0 = 0} = ∅, then

γ|[s1,b) ⊂ J+[γ(s1)] ∩ {x0 ⩽ 0}.

However, in view of the fact that any causal curve emanating from γ(s1) satis�es (2), it follows that

J+[(p0, p1, p2, p3)] ⊆
{
(x0, x1, x2, x3) : x0 − p0 ⩾

1

2

√√√√ 3∑
i=1

(xi − pi)2 and x0 ⩾ p0
}
,

i.e. J+[(p0, p1, p2, p3)] is contained in the future of cone of �twice� the width of that associated to η.
Thus, J+[γ(s1)] ∩ {x0 ⩽ 0} is contained in a compact set. Using the lemma proved at the end of
part (a), this implies that γ cannot be inextendible, which is a contradiction.

(c) The AdS spacetime is not globally hyperbolic. As we proved in Exercise 6.b, there exist points
p, q in that spacetime with q ∈ I+[p] such that no timelike geodesic exists connecting p, q; recall that,
on a globally hyperbolic spacetime, such a timelike geodesic always exist. You can also check that,
with the notations of Exercise 6,b, the causal diamond J+[(0, 0)]∩J−[(π, 0)] is not compact (extends
all the way to �in�nity� in the x direction).

7.2 Let (M, g) be a spacetime and let p ∈ M.

(a) Show that if q ∈ J+(p), then there exists a sequence of points qn ∈ I+(p) with qn
n→∞−−−→ q,

i.e.
J+(p) ⊂ clos

(
I+(p)

)
.

Hint: Starting from a causal curve γ connecting p to q, you need to �nd a sequence of
timelike curves γn emanating from p converging to γ. To this end, if T is a globally timelike
vector �eld on M, consider variations γs(t) of γ(t) = γ0(t) such that the variation vector
�eld ∂

∂s
(γs(t))|s=0 is of the form f(t)T |γ(t) for an appropriately chosen function f .

(b) Assume, moreover, that (M, g) is globally hyperbolic. Prove that, in this case

J+(p) = clos
(
I+(p)

)
.
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(c) Can you �nd an example of a (necessarily not globally hyperbolic) spacetime (M, g) with
a point p ∈ M such that J+(p) is not closed?

Solution. (a) Let γ : [0, 1] → M be a future directed causal curve such that γ(0) = p and γ(1) = q.
Let N be a a future directed timelike vector �eld on M and f : [0, 1] → [0,+∞) a function that we
will determine shortly, satisfying the condition

f(0) = 0.

Let also γs : [0, 1], s ∈ [0, 1) be a family of curves which is a variation of γ (i.e. satisfy γ0 = γ) with

γs(0) = γ(0) = p

and with variation vector �eld X which satis�es

X|γ = f ·N

(since f(0) = 0, the above two requirements are consistent). We will show that, for s > 0 small
enough, the tangent γ̇s is future directed timelike; this will imply that the points γs(1) belong to

I+[p]; in view of the fact that γs(1)
s→0−−→ γ0(1) = q, this will imply that q ∈ clos(I+[p]), as required.

For any t0 ∈ [0, 1], let (x0, . . . , xn) be a local coordinate chart around γ(t0) such that ∂0 is future
directed and timelike; then

N0|γ(t) > 0.

With respect to those coordinates, we can calculate for any t ∈ [0, 1] such that γ(t) lies inside this
coordinate chart:

∂

∂s
γα
s (t)

∣∣
s=0

= X i|γ(t) = f(t)N i|γ(t)

and, therefore, by di�erentiating in t:

∂

∂s
γ̇α
s (t)

∣∣
s=0

= f ′(t)N i|γ(t) + f(t)
dN i|γ(t)

dt
.

Therefore, integrating in s, we have for s small enough:

γ̇α
s (t) = γ̇α(t) + s

(
f ′(t)N i|γ(t) + f(t)

dN i|γ(t)
dt

)
+O(s2).

Since γ̇ is future directed and causal, the above vector will be future directed and timelike as long

as f ′(t)N i|γ(t) + f(t)
dN i|γ(t)

dt
is future directed and timelike and s is small enough. For this, it su�ces

to �x f to satisfy
f ′(t) ⩾ Cf(t) for all t ∈ [0, 1]

for a constant C which is large enough in terms of the ratios
∣∣∣ dNi|γ(t)

dt

N0|γ(t)

∣∣∣ and ∣∣∣N i|γ(t)
N0|γ(t)

∣∣∣. In each coordinate

chart as above, the fact that such a constant exists follows by the fact that N is continuously
di�erentiable along γ; since γ([0, 1]) is a compact set in M, it can be covered by a �nite number
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of coordinate charts as above, so this constant C can be chosen to be the same for each of these
coordinate charts.

(b) Let q ∈ clos
(
I+[p]

)
; by the construction of part (a), there exist a sequence qn ∈ I+[p]

such that qn → q and which, moreover, satis�es the property that qn+1 ∈ I−[qn]; this is because
the curve s → ζ(s) = γs(1) constructed in part (a) is timelike future directed for small s, since
∂sγs(1)|s=0 = f(1)N |γ(1). In particular, if σ is any future directed causal curve connecting p to qn, I
can extend it to a future directed causal curve σ̃ connecting p to q0 by following the curve ζ(s) from
qn to q0. In particular, denoting with Cn the space of curves

Cn
.
=

{
σ : [0, 1] → M, σ(0) = p, σ(1) = qn, γ is continuous, causal and future directed

}
,

by extending each curve σ in Cn connecting p to qn to a curve σ̃ as described above connecting p to
q0, we can homeomorphically identify Cn with the subset C̃n of C0 of future directed causal curves
going from p to qn and from there to q by following the curve ζ. In particular,

C̃n+1 ⊆ C̃n.

In particular, each curve in C̃n is a future directed causal curve connecting p to q0 passing through
the points q1, . . . , qn

Since (M, g) is globally hyperbolic, the space of curves Cn is compact with the C0 topology. In
particular, C̃n is a compact subset of C0. Therefore, the monotonicity property above implies that

C̃
.
=

∞⋂
n=0

C̃n

is non-empty and compact. But each curve σ in C̃ is a future directed causal curve connecting p to
q0 such that σ passes through all the points qn, n ∈ N. By continuity, this means that σ also passes
through q = limn qn. Hence, q is connected to p through a future directed causal curve and, thus,
q ∈ J+[p]. Thus,

clos
(
I+[p]

)
⊆ J+[p].

Combined with part (a), we obtain the equality of the two sets.

(c) Consider (R1+1, η) with the point (1, 1) removed. Then J+[(0, 0)] consists of the cone {(t, x) :
t ⩾ |x|} with the ray {(t, t) : t ⩾ 1} removed.

7.3 In this exercise, we will explore some of the geometric properties of the Riemann curvature
tensor. To this end, let us �x a smooth Lorentzian manifold (M, g). Recall that

R(X, Y )Z
.
= ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

(A) Let ϕ : (−ϵ, ϵ)× [0, 1] → M be a smooth map such that, for each s ∈ (−ϵ, ϵ), γs = ϕ(s, ·)
is a geodesic. De�ne the vector �elds T = dϕ( ∂

∂t
) and X = dϕ( ∂

∂s
).

(a) Prove that [T,X] = 0. (Hint: Compare ∇XT and ∇TX.)
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(b) Let us de�ne the acceleration vector �eld

a = ∇T∇TX.

Prove that
a = −R(X,T )T.

Intuitively, X measures the in�nitesimal separation between nearby geodesics; thus,
when the right hand side above is non-zero, nearby geodesics tend to accelerate to-
wards or away from each other.

(B) Let γ : [0, 1] → M be a smooth curve. For any t1, t2 ∈ [0, 1], we will denote with
Pγ(t1)→γ(t2) : Tγ(t1)M → Tγ(t2)M the parallel transport along γ from γ(t1) to γ(t2).

(a) Prove that, for any vector �eld Z along γ, as τ → 0:

lim
τ→0

Z|t=0 − Pγ(τ)→γ(0)Z|t=τ

τ
= −∇γ̇(0)Z.

Hint: Contruct a frame {ei}ni=1 of vector �elds along γ which are parallel translated,
and express Z in components with respect to ei.

*(b) Let ϕ : [−1, 1]× [−1, 1] → M be a smooth map with p = ϕ(0, 0) and let X = ϕ∗( ∂
∂x1 )

and Y = ϕ∗( ∂
∂x2 ). For any s1, s2 ∈ (0, 1), we will consider the rectangular loop γ(s1,s2)

starting and ending at p which is of the form γ(s1,s2) = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1(t) = ϕ(t, 0), t ∈ [0, s1],

γ2(s) = ϕ(s1, s), s ∈ [0, s2],

γ3(t) = ϕ(s1 − t, s2), t ∈ [0, s1],

γ3(s) = ϕ(0, s2 − s), s ∈ [0, s2].

For any Z ∈ TpM, let Z(s1,s2) ∈ TpM be the tangent vector obtained after parallel
transporting Zp around γ, i.e. following the successive mappings

Z →Z ′ = Pγ1(0)→γ1(s1)Z → Z ′′ = Pγ2(0)→γ2(s2)Z
′

→ Z ′′′ = Pγ3(0)→γ3(s1)Z
′′ → Z(s1,s2) = Pγ4(0)→γ4(s2)Z

′′′.

Show that

lim
s2→0

lim
s1→0

Z(s1,s2) − Z

s1s2
= −R(X, Y )Z.

Solution. (A) (a) In any local coordinate system (x0, . . . , xn) on M, we have

Tα =
∂ϕα

∂t
and Xα =

∂ϕα

∂s

Note that, for any s ∈ (−ϵ, ϵ), we can view X as a vector �eld along the curve γs : [0, 1] → M,
γs(t) = ϕ(s, t), whose tangent vector is T ; thus, we can compute

(∇TX)α =
d

dt

(
Xα|γs(t)

)
+ Γα

βγ|γs(t)T βXγ =
∂2ϕα

∂t∂s
+ Γα

βγ|ϕ(s,t)
∂ϕβ

∂t

∂ϕγ

∂s
.
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Similarly, for any t ∈ [0, 1], we can think of T as a vector �eld along the curve ϕt : (−ϵ, ϵ) → M,
ϕt(s) = ϕ(s, t), whose tangent vector is X; we therefore have:

(∇XT )
α =

d

ds

(
Tα|ϕt(s)

)
+ Γα

βγ|ϕt(s)X
βT γ =

∂2ϕα

∂t∂s
+ Γα

βγ|ϕ(s,t)
∂ϕβ

∂s

∂ϕγ

∂t
.

Using the fact that the Levi-Civita connection is torsion-free and Γα
βγ is symmetric in β, γ, we can

readily compute

[T,X]α = (∇TX)α − (∇XT )
α = 0.

(b) Using the fact that [X,T ] = ∇XT −∇TX = 0 (from part (a)) and the fact that R(U, V )W =
∇U∇VW −∇V∇UW −∇[U,V ]W , we can readily calculate:

a = ∇T∇TX = ∇T∇XT = −R(T,X)T +∇X∇TT −∇[T,X]T = −R(T,X)T,

where, in passing to the last equality above, we made use of the fact that γs is a geodesic and T = γ̇s,
so that ∇TT = 0.

(B) (a) Let {ξα}nα=0 be a basis of orthonormal tangent vectors in Tγ(0)M with respect to g|γ(0) and
let {eα}nα=0 be a set of vector �elds along γ such that eα is the parallel translate of ξα (i.e. eα|t=0 = eα
and ∇γ̇eα = 0. Since

d

dt
g(eα, eβ)|γ(t) = g(∇γ̇eα, eβ) + g(eα,∇γ̇eβ) = 0,

we infer that, for any t ∈ [0, 1], {eα|γ(t)}nα=0 is an orthonormal base for Tγ(t)M.
Any vector �eld Z along γ can be expressed, with respect to the basis {eα}nα=0 as Z = Zαeα

for some (unique) component functions Zα : [0, 1] → R, α = 0, . . . , n. In this basis, the covariant
derivative and the parallel translation of a vector �eld become a standard derivative and translation,
respectively, of the component functions; in particular, we can readily compute:

∇γ̇Z = ∇γ̇(Z
αeα) =

dZα

dt
eα + Zα∇γ̇eα =

dZα

dt
eα.

Moreover, since, for any t1, t2 ∈ [0, 1], we have Pγ(t1)→γ(t2)eα|γ(t1) = eα|γ(t2), the linearity of the parallel
transport operator implies that if v = vαeα|γ(t1) is an element of Tγ(t1)M, then

Pγ(t1)→γ(t2)v = vαeα|γ(t2).

We can thus calculate:

lim
τ→0

Z|t=0 − Pγ(τ)→γ(0)Z|t=τ

τ
= lim

τ→0

Zα(0)eα|t=0 − Pγ(τ)→γ(0)(Z
α(τ)eα|t=τ )

τ

= lim
τ→0

Zα(0)eα|t=0 − Zα(τ)eα|t=0

τ

= −dZα

dt
(0)eα

= −∇γ̇(0)Z.
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Moreover, using Taylor's theorem to express for any t ∈ [0, 1]:

Zα(t) = Zα(0) +
dZα

dt
(0)t+

1

2

d2Zα

dt2
(ξ(t))t2

for some ξ(t) ∈ [0, t] depending smoothly on t, we also have the following useful expression for the
parallel transport operator:

Pγ(t)→γ(0)Z = Z|γ(0) +∇γ̇(0)Z · t+ V [t] · t2 (3)

for some smooth function V : t → V [t] ∈ Tγ(0)M with V α[t] = 1
2
d2Zα

dt2
(ξ(t)); note that

V [t]
t→0−−→ 1

2
∇γ̇∇γ̇Z|t=0.

(b) For ϕ : [−1, 1] × [−1, 1] → M as in the statement of the exercise, we will denote by γs(·)
the family of curves t → ϕ(s, t) and by γ′

t(·) the family of curves s → ϕ(s, t) in M. Note that
X|ϕ(s,t) = γ̇s(t) and Y |ϕ(s,t) = γ̇′

t(s). For any vector �eld W de�ned along the image of the map ϕ and
any h ∈ (−1, 1), we will de�ne the vector �elds P(h)W on ϕ

(
[−1, 1]× [−1 + |h|, 1− |h|]

)
and P′(h)W

on ϕ
(
[−1+ |h|, 1−|h|]× [−1, 1]

)
to be the parallel translates of W along γs and γ′

t, respectively, with
step h, i.e. (

P
(h)W

)
|ϕ(s,t) = Pγs(t−h)→γs(t)W and

(
P
′(h)W

)
|ϕ(s,t) = Pγ′

t(s−h)→γ′
t(s)

W.

Note that, applying (3) for γs and γ′
t, we obtain(

P
(h)W

)
|ϕ(s,t) = W |ϕ(s,t) − (∇XW )|ϕ(s,t)h+ V1[W ;h]|ϕ(s,t)h2(

P
′(h)W

)
|ϕ(s,t) = W |ϕ(s,t) − (∇YW )|ϕ(s,t)h+ V2[W ;h]|ϕ(s,t)h2

for some smooth vector �elds V1[W ;h], V2[W ;h] depending smoothly on h and W and satisfying

V1[W,h]
h→0−−→ 1

2
∇X∇XW, V2[W,h]

h→0−−→ 1

2
∇Y∇YW. (4)

Using the above formulas, we can compute for any s1, s2 > 0

P
′(s2)P(s1)Z = P

′(s2)
(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
=

(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
−

(
∇Y

(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

))
s2

+ V2

[(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
; s2

]
s22

= Z − (∇XZ)s1 − (∇YZ)s2 + (∇Y∇XZ)s1s2

+ V1[Z; s1]s
2
1 + V2

[(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
; s2

]
s22 − (∇Y V1[Z; s1])s

2
1s2

and, similarly,

P
(s1)P

′(s2)Z = Z − (∇XZ)s1 − (∇YZ)s2 + (∇X∇YZ)s1s2
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+ V2[Z; s2]s
2
2 + V1

[(
Z − (∇YZ)s2 + V2[Z; s2]s

2
2

)
; s2

]
s21 − (∇XV2[Z; s2])s

2
2s1.

Therefore, we compute

P
′(s2)P(s1)Z − P

(s1)P
′(s2)Z

=
(
∇Y∇XZ −∇X∇YZ

)
s1s2

+
(
V1[Z; s1]− V1

[(
Z − (∇YZ)s2 + V2[Z; s2]s

2
2

)
; s2

])
s21

+
(
V2

[(
Z − (∇XZ)s1 + V1[Z; s1]s

2
1

)
; s2

]
− V2[Z; s2]

)
s22

−
(
(∇Y V1[Z; s1])− (∇XV2[Z; s2])

)
s22s1.

In particular, using (4) for the second and third lines in the right hand side, we have:

lim
(s1,s2)→(0,0)

P
′(s2)P(s1)Z − P

(s1)P
′(s2)Z

s1s2
= ∇Y∇XZ −∇X∇YZ = R(Y,X)Z.

Using the fact that P(−h)
P
(h) = Id (and similarly for P′), we have

Z(s1,s2)|p − Z|p =
(
P
′(−s2)P

(−s1)P
′(s2)P(s1)Z

)
|ϕ(0,0) − Z|ϕ(0,0)

=
(
P
′(−s2)P

(−s1)
[
P
′(s2)P(s1)Z − P

(s1)P
(′s2)Z

])∣∣∣
ϕ(0,0)

Therefore, since limh→0 P
(−h) = Id (and similarly for P′), we obtain the required formula:

lim
(s1,s2)→(0,0)

Z(s1,s2)|p − Z|p
s1s2

= R(Y,X)Z|p.

7.4 Let (M, g) be a smooth Lorentzian manifold of dimension n + 1 and let R be its Riemann
curvature tensor.

(a) Show that, in any local coordinate chart (x0, . . . , xn) on M, the components of R satisfy
the following identities:

1. Rαβγδ = −Rαβδγ.

2. Rαβγδ = Rγδαβ.

3. Rαβγδ +Rαδβγ +Rαγδβ = 0 (First Bianchi identity).

4. ∇αRβγδϵ +∇γRαβδϵ +∇βRγαδϵ = 0 (Second Bianchi identity).

Prove that the Ricci tensor satis�es:

gαβ∇α

(
Ricβγ −

1

2
Rgβγ

)
= 0.

That is to say, the Einstein tensor of every Lorentzian manifold is divergence free.
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(b) Prove that, when n+1 = 3, Rαβγδ has exactly 6 independent components. Noting that this
is the same number of independent components as for the Ricci tensor Ricij = gabRiajb,
can you prove that, when n + 1 = 3, Ricij = 0 implies that Rijkl = 0? How many
independent components do these tensors have in dimension n+ 1 = 2?

(c) When n+ 1 ⩾ 3, de�ne the Weyl tensor by the relation

Wαβγδ =Rαβγδ +
1

n− 1

(
Ricαδgβγ −Ricαγgβδ +Ricβγgαδ −Ricβδgαγ

)
+

1

n(n− 1)
R
(
gαγgβδ − gαδgβγ

)
where R = gijRicij is the Ricci scalar. Prove that the Weyl tensor satis�es the same
symmetries as the Riemann tensor, and moreover

gαγWαβγδ = 0.

Deduce that Wαβγδ = 0 when n+ 1 = 3.

*(d) Let ϕ : M → R+ be a C∞ function and consider the conformal metric

g̃ = ϕ2g.

Show that the Weyl tensors of g and g̃ satisfy

W̃α
βγδ = Wα

βγδ,

i.e. W is a conformal invariant of g. Deduce that a necessary condition for a metric g to
be conformally �at, i.e. of the form ϕ2η, is that W = 0 (it can be shown that it is also a
su�cient condition when dimM > 3).

Solution. (a) All of the above identities are tensorial in nature, i.e. can be reexpressed in a coordinate
independent way as follows: For any vector �elds X, Y, Z,W on M,

R(X, Y )Z = −R(Y,X)Z,

g
(
R(X, Y )Z,W

)
= −g

(
R(Z,W )X, Y

)
,

R(X, Y )Z +R(Z,X)Y +R(Y, Z)X = 0,

(∇ZR)(X, Y )W + (∇YR)(Z,X)W + (∇XR)(Y, Z)W = 0.

Thus, in order to prove these identities, it su�ces to show that they are true in one coordinate
system.

The most convenient coordinates to establish pointwise identities are the normal ones: Recall
that, for any p ∈ M, if (x0, . . . , xn) are normal coordinates around p, then

gαβ|p = ηαβ and ∂αgβγ|p = 0 = Γλ
αβ|p. (5)
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Moreover, as a consequence of the lemma of Gauss:

∂2
αβgγδ|p + ∂2

γαgβδ|p + ∂2
βγgαδ|p = 0. (6)

Therefore, for any tensor �eld T around p:

(∇αT )
i1...ik
j1...jl

|p = ∂αT
i1...ik
j1...jl

|p.

Moreover, recall that, in any coordinate system, the Riemann curvature tensor takes the form

Rαβγδ = gαλ
(
∂γΓ

λ
δβ − ∂δΓ

λ
γβ + Γλ

γρΓ
ρ
δβ − Γλ

δρΓ
ρ
γβ

)
,

where

Γλ
µν =

1

2
gλκ

(
∂µgκν + ∂νgκµ − ∂κgµν

)
.

Thus,

Rαβγδ =
1

2

(
∂2
βγgαδ − ∂2

βδgαγ + ∂2
αδgβγ − ∂2

αγgβδ
)
+ g · ∂g · ∂g.

Using the property (5) of the normal coordinate system, we can readily verify that

Rαβγδ|p =
1

2

(
∂2
βγgαδ − ∂2

βδgαγ + ∂2
αδgβγ − ∂2

αγgβδ
)
|p

and

(∇λR)αβγδ|p =
1

2

(
∂3
λβγgαδ − ∂3

λβδgαγ + ∂3
λβγ − ∂3

λαγgβδ
)
|p

The identities 1�2 follow directly from the above expression, while the Bianchi identities (i.e. identities
3�4) follow using (6).

Taking two contractions of the 2nd Bianchi identity, and using the symmetries of R (and the fact
that ∇g = 0, Ricµν = gκλRµκνλ = −gκλRµκλν and R = gαβRicαβ), we can also calculate:

0 = gαϵgγδ∇αRβγδϵ + gαϵgγδ∇γRαβδϵ + gαϵgγδ∇βRγαδϵ

= −gαϵ∇αRicβϵ − gγδ∇γRicβδ +∇βR

= −2gµν∇µRicνβ +∇βR,

which is exactly the identity that we wanted to prove.
(b) When dimM = 3, it is easy to check using the symmetries of the Riemann curvature tensor

R that all components Rαβγδ can be obtained from the following ones:

R1212, R1313, R1213, R1232, R1323, R2323

(one way to select six such components is to note that the symmetries of R imply that any component
with three repeated indices vanishes; then, we can �rst compute all components where the index 1
appears twice, then once and �nally a component where 1 doesn't appear as an index). Moreover,
it is also easy to check that no one of the above components can be obtained from any of the other
�ve via permutations of the indices (and, hence, from the symmetries of Rαβγδ). This is the same
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number of independent components as for the Ricci tensor Ricαβ = gγδRαγβδ in this dimension (since
Ricαβ is essentially a symmetric 3 × 3 matrix, it has at most 6 independent components; it can be
also checked that each of {Ric11, Ric12, Ric13, Ric22, Ric23, Ric33} cannot be obtained from the other
�ve using the symmetries of R). In fact, it is easy to check that we have the following 6 × 6 linear
system of relations between the components of Ric and R (using, again, the symmetries of R to carry
out the appropriate permutations of the indices):

Ric11 = g22R1212 + 2g23R1213 + g33R1313,

Ric12 = −g12R1212 − g13R1213 − g23R1232 + g33R1323,

Ric13 = −g13R1313 + g12R1213 − g23R1323 + g22R1232

Ric22 = g11R1212 + 2g13R1232 + g33R2323

Ric23 = −g23R2323 + g22R1232 + g13R1323 + g11R1213

Ric33 = g11R1313 + 2g12R1323 + g22R2323.

It can be readily checked that, provided [gij] is non-degenerate, the above system is also non-
degenerate, namely it can be solved to express {R1212, R1313, R1213, R1232, R1323, R2323} linearly in
terms of {Ric11, Ric12, Ric13, Ric22, Ric23, Ric33}. In particular, if Ric = 0, then R = 0 as well.

In the case when dimM = 2, it can be readily veri�ed that R and Ric have each only one
independent component (namely R1212 and R11, since any component of R with three repeated
indices has to vanish).

(c) Using the fact that Ricαβ = Ricβα and

Rαβγδ = −Rαβδγ,

Rαβγδ = Rγδαβ,

Rαβγδ +Rαδβγ +Rαγδβ = 0,

we can readily check that the Weyl tensor W also satis�es

Wαβγδ = −Wαβδγ,

Wαβγδ = Wγδαβ,

Wαβγδ +Wαδβγ +Wαγδβ = 0.

Moreover,

gγδWαγβδ = gγδRαγβδ +
1

n− 2
gγδ

(
Ricαδgβγ −Ricαβgγδ +Ricβγgαδ −Ricγδgαβ

)
+

1

(n− 1)(n− 2)
Rgγδ

(
gαβgγδ − gαδgβγ

)
= Ricαβ +

1

n− 2

(
Ricαδδ

δ
β − nRicαβ +Ricβγδ

γ
α −Rgαβ

)
+

1

(n− 1)(n− 2)
R
(
ngαβ − δγαgβγ

)
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= Ricαβ +
1

n− 2

(
Ricαβ − nRicαβ +Ricαβ −Rgαβ

)
+

1

(n− 1)(n− 2)
R
(
(n− 1)gαβ

)
= 0.

In the case when dimM = 3, the fact that Wαβγδ satis�es the same symmetries as Rαβγδ implies
that, exactly as in the case of part (a) of this exercise, all independent components of Wαβγδ can
be expressed linearly in terms of the independent components of gγδWαγβδ; since the latter tensor
vanishes identically in any dimension, we infer that W = 0 when n = 3.

(d) In any local coordinate chart on M, we have

g̃αβ = ϕ2gαβ and g̃αβ = ϕ−2gαβ.

We can, therefore, readily compute that the Christo�el symbols Γ̃γ
αβ = 1

2
g̃γδ

(
∂αg̃δβ + ∂β g̃δα − ∂δg̃αβ

)
and Γγ

αβ of g̃ and g, respectively, are related by:

Γ̃γ
αβ = Γγ

αβ +
1

ϕ
∂αϕδ

γ
β +

1

ϕ
∂βϕδ

γ
α − 1

ϕ
∂δϕg

γδgαβ.

Using the formula
Rα

βγδ = ∂γΓ
α
δβ − ∂δΓ

α
γβ + Γα

γλΓ
λ
δβ − Γα

δλΓ
λ
γβ

for the components of the Riemann curvature tensor, we can similarly compute that

R̃αβγδ = ϕ2Rαβγδ − ϕ2
(
gαγTβδ − gβγTαδ + gβδTαγ − gαδTδγ

)
, (7)

where the tensor T is de�ned in terms of the conformal factor ϕ by

Tαβ = ϕ−1∂2
αβϕ− ϕ−1Γλ

αβ∂λϕ− 2ϕ−2∂αϕ∂βϕ+
1

2
ϕ−2∂γϕ∂δϕg

γδgαβ.

We can therefore readily check that the term T̄αβγδ = gαγTβδ − gβγTαδ + gβδTαγ − gαδTδγ in the
right hand side of (7) is traceless with respect to any pair of indices (namely any contraction of the
form gαγT̄αβγδ vanishes). Therefore, using the formula de�ning Wαβγδ in terms of Rαβγδ that, when
considering the di�erence between W̃αβγδ and ϕ2Wαβγδ all the terms involving the tensor T from (7)
cancel out, i.e.

W̃αβγδ − ϕ2Wαβγδ = 0.

In particular, since R = 0 (and, thus, W = 0) for the �at metric η, we infer that a metric g which
is of the form ϕ2 · η has vanishing Weyl tensor.
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